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A un ive r sa l  method,  economica l  in the number  of calculat ions r equ i r ed ,  is p roposed  for  ca lcula t -  
ing t r a n s f e r  coeff icients  fo r  pa r t i a l ly  ionized gas mix tu re s  with an unl imited number  of compo-  
nents.  I t s  use  is i l lus t ra ted  with the example  of calculat ing hea t  t r a n s f e r  in a flow of l o w - t e m -  
pe r a tu r e  p l a s m a .  

Calculat ing the hea t  and m a s s  t r a n s f e r  in f lows of l o w - t e m p e r a t u r e  p l a sma  requ i re s  data on the t r a n s f e r  
coeff icients  of gas mix tu re s  of va r ious  composi t ions  over  a wide range  of t e m p e r a t u r e  and p r e s s u r e .  Di rec t  
calculat ion of these  values  dur ing solution of hea t -  and m a s s - t r a n s f e r  p r o b l e m s  on p e r m e a b l e  and i m p e r m e a b l e  
su r f aces  is difficult  because  of the g rea t  complexi ty  of the exac t  fo rmu la s  of mo lecu la r  theory  and the l imi ted  
capabi l i t ies  of p r e s e n t  compute r s .  

Use of p reex i s t ing  tabulat ions of v i scos i ty  and t h e r m a l  conductivity coeff icients  is not a lways poss ible .  
Due to var iab i l i ty  of the la rge  number  of p a r a m e t e r s  on which these  quant i t ies  depend,  the volume of the tables  
p roves  to be unusually l a rge .  Thus ,  there  is a need for  s impl i f ied methods of calculat ing t r a n s f e r  coefficients~ 
based on s e m i e m p i r i c a l  exp re s s ions  for  v i scos i ty  and f rozen  t h e r m a l  conductivity.  A detai led review of such 
exp res s ions  for  neut ra l  gas mix tu re s  was p re sen ted  in [1, 2]. Espec ia l ly  s imple  exp res s ions  can be obtained 
with the use of the bi furcat ion approximat ion  for  b inary  diffusion coeff icients  [3, 4]. 

In [5] the p r e s e n t  authors  p roposed  an approx ima te  method for  calculat ing mul t icomponent  diffusion in 
pa r t i a l ly  ionized gas m i x t u r e s ,  based  on the ambipo la r  approximat ion.  A two-group bifurcat ion a p p r o x i m a -  
tion was used for  the b inary  diffusion coeff icients .  This  allowed reduct ion of the solution of the s y s t e m  of 
equations desc r ib ing  mul t icomponent  diffusion for  an v-component  mix tu re  to solution of a s y s t e m  of four  
l inear  equations.  

This  same  approximat ion  may be used to s impl i fy  the exp re s s ions  for  v i scos i ty  and f rozen  t h e r m a l  con-  

ductivity.  

The approx imate  fo rmula  for  v i scos i ty  of a mul t icomponent  gas mix tu re  [2] has  the following fo rm:  

v 

"= Djj Xk (1) 

k=x Djk 

To calculate  the f rozen  t h e r m a l  conductivity it is des i r ab le  to use an analogous fo rmula  which is one 
va r i an t  of Vas i l ' eva '  s equation [1] 

7,t= ~-~ ),~j xj (2) 

z...a D j k 

Simpler  expres s ions  for  the t h e r m a l  conductivity and v i scos i ty  coeff icients  of gas mix tu res  such as the 
fo rmu la s  of Mann and Brokaw are  not applicable under conditions of ionization [6]. 

The v iscos i ty  and t h e r m a l  conductivity of individual components  may  be r ep re sen t ed  as follows: 
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where  

5 oD~jM i 
t b = - ~ - ~  , (3) 

)~H= 5 pDii ! 5 )  
6 ~ ~''~ + ~-R , (5) 

The la t t e r  express ion  uses  Eiken 's  co r r ec t i o n  for  in ternal  degrees  of par t ic le  f reedom [1]. 

Calculations with Eqs.(1) ,  (2) a re  made difficult  by the p re sence  of a double summation and the necess i ty  
of calculating all binary diffusion c ro s s - coe f f i c i en t s ,  the general  formula  of which has the form:  

V ~tRT (Mh + MI) 
Dh I = ~ kT 2M~M~ (6) 

�9 - -  ~ ( 1 , 1 )  
8 p ~l 

With inc rease  in the number  of components cons idered  the re  is a p ro g re s s iv e  increase  in the number  of 
computations requ i red  and the m e m o r y  space needed to re ta in  the initial data requ i red  for  calculat ion of ~ l~  �9 
These  diff icult ies may be avoided if we use the two-group bifurcat ion approximation for  the binary diffusioil 
coeff icient  [5]. The two groups of components ,  neut ra ls  and ions,  cor respond  to three  groups of binary diffu-  
sion coeff icients:  1) n e u t r a l - n e u t r a l ;  2) n e u t r a l - i o n ;  3) i o n - i o n .  

F o r  each component we introduce two fac tors  which approximate ly  cha rac te r i ze  its p roper t i e s  in the dif-  
fusion process -  F n and F1.. The f i r s t  of these r e f e r s  to binary diffusion of the given component and any neutra l  

�9 j J component;  the second,  to binary diffusion of the given component and any ion. Thus ,  for  the f i r s t  group of 
diffusion coefficients  we have the following approximate  equality:  

D 
Dk~ ~ Fn F n , (7) 

k l 

where  D is the value of the diffusion coefficient  for  par t i c les  of unit molecu la r  mass  for  unity value of the col -  
l is ion in tegral  f~(l~l). It has been shown [3] that  for  many sys tems  of neut ra l  components corresponding to gas 
mix tu res  often m~t in p rac t i ce ,  the fac to r s  F~ may be se lec ted  such that Eq. (7) is sat isf ied with a sufficient 
degree  of accuracy .  This  is due to the cha r ac t e r  of the dependence of the diffusion coefficient  on molecu la r  
mass  of the components and the p re sence  of ce r ta in  cor re la t ions  between values of the coll is ion integrals .  

n Since the coll ision integrals  for  neutra l  pa r t i c les  a re  functions of t e m p e r a t u r e s  the fac tors  F n will also be 
t empe r a tu r e  dependent.  

An analogous approach may be used in the p resence  of ionization. 

F o r  the second group of binary diffusion coefficients  we use the following express ion:  

D 
Dht~ F ~F n (8) 

k l 

The subscr ip t  k he re  indicates a neutra l  component;  l denotes an ion. 

A special  case is the diffusion of an atom and an ion of one and the s am e  e lement .  Upon collision,, of such 
par t i c les  resonant  charge exchange occu r s ,  which leads to re la t ive ly  high values of the quantit ies ~tld) [7], 8 0  

that use of Eq. (8) is not des i rable .  For  this ease we take 
~ b  

D 
mhr = - -  ~ ( , , 1 ~  ( 9 )  

| / M a  ~ k r  

where  r is the index of the par t ic le  coll is ion with par t ic le  k which occurs  with resonant  charge exchange. The 
~!1,~) for  n e u t r a l - i o n  coUisions,  and consequently,  the fac tors  F i n quanti t ies n '  Fi  a re  functions of t empera ture .  

K ~  
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For the third group of binary diffusion coefficients 

D 
Dk:~ F~V~,~<!,l ~ , (10) 

l "  l b ~ i i  

where ~ ' I )  is ,.the collision integral,.r for single charged ions. This form was chosen so that for positively 
charged ions ~2~f) = (ZkZ/)212~,i ' [8], " The quantities Fi n in th is  case prove to be constant. 

For a given system of components to be considered the factors yn,  ~ are selected such that the approxi- 
mate equalities (7), (8), (10) have the smallest  possible relative error.-- They may be calculated with the meth- 
od of least squares. For example, for the f i rs t  group of diffusion coefficients we use the condition 

D 
k~ ' /~ ( lg  Dhz - - lgF~-- lgF~)2=min.  (11) 

The summation in Eq. (11) is performed over all neutral components. Differentiation of Eq. (11) produces a 
system of.linear algebraic equations in In F~, the solution of which gives F n values in explicit form. The coef- 
ficients Fn ~, F n and F~ are determined in a~ analogous manner. Substitution of approximations (7)-(10) in 
Eqs. (1), (2) with consideration of Eqs. (3)-(5) produces the following expressions for viscosity and frozen 
thermal conductivity: 

5 pD Z Mjxj , 
= T "  ~4 /=, A~i(T j+Rj) 

( 5 pD ~ xj Cp~+ 4 

~1= --~-" M __i:, A~j(T~.d- R~) '~'A~'e' 

V 

Dee Z xj 
j=! De$ 

(12) 

(13) 

(14) 

where for neutrals 

for  ions 

for atoms and atomic ions 

and for remaining particles 

The quantities Bid are defined asfol lows:  

r ,  = e7 B.. + e3 B.,. (15) 

T# = F 7 Bla + F~ B u, (16) 

(17) 

R~=O. (18) 

B.. =~x~7 (19) 

i 

B,.= ~x/~ (21) 

i 
In Eqs. (19), (21) summation is performed over all neutrals, and in Eqs. (20), (22), over all ions. The volume 
of calculations with Eqs. (12)-(22) is proportional to the number of components, which significantly simplifies 
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TABLE 1. Coefficients  of Analyt ical  E x p r e s s i o n s  for  Approximated  
F a c t o r s  

Compo- 
nent 

0 2  
NO 
N= 
O 

A m 

9,15 0,154 
8,93 0,098 
8,82 0,143 
5,49 0,202 

l F i 

A m 

8,56 O, 500 
8,46 0,500 
8,35 0,500 
6,06 0,40O 

n F i Compo- 
nent A 

5,85 
 oo+ ,127 

9,59 
N + 9,28 

0,197 
0,000 
0,000 
0,000 

5,84 
2,32 
2,00 
1,93 

i 
F i 

0,400 
0,000 
0,000 
0,00O 
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Fig. 1. Viscos i ty  (10 -4 N-  s ec /m  2) (a), f rozen  t h e r m a l  conduc- 
t ivity (W/re. ~ (b), and total  t h e r m a l  conductivity of a i r  {W/ 
m . ~  (c) v e r s u s  t e m p e r a t u r e  (103"K): 1) p r e s e n t  study: 2) r e -  
sul ts  of [8]; 3) [10]. 

calculat ions of t r ans fe  r p r o p e r t i e s  of mix tu re s  with complex  composi t ion as compared  to calculat ions with the 
or ig inal  Eqs.  (1)-(5). It  is a lso signif icant  that  for  calculat ions of t r a n s f e r  p r o p e r t i e s  of mix tu re s  with va r i ab le  
composi t ion it is suff icient  to re ta in  in the comp.uter m e m o r y  a number  of coeff icients  p ropor t iona l  to v, ap -  
pea r ing  in the analyt ic  exp re s s ions  for  F n and F~, or  the values  of these quanti t ies for  a number  of t e m p e r a -  

J 
tu res .  It  is suff icient  to de te rmine  the values  o{ these coefficients  once,  before  calculat ing the t r a n s f e r  coeff i -  
cients .  

To e s t ima te  the e r r o r s  produced by the method desc r ibed  above,  the t r a n s f e r  p r o p e r t i e s  of equi l ibr ium 
a i r  at p r e s s u r e s  of (i1-10 a tm were  calculated.  The total  t he rma l  conductivity of the equi l ibr ium gas mix tu re  
was defined as the value of t h e r m a l  flux genera ted  by a unit t e m p e r a t u r e  gradient .  Moreove r ,  the absence  of 
diffusion flows of chemica l  e lement  m a s s  was requi red .  This  co r r e sponds  to Butler  and Brokaw ' s  definition 
of total  t he rma l  conductivity [9]. A quite detai led calculat ion of the t r a n s f e r  p r o p e r t i e s  of a i r  was  p e r f o r m e d  
by Sokolova [8], using fo rmu la s  for  higher  approx imat ions  of C h a p m a n - E n s k o g  theory.  For  compar i son ,  the 
resu l t ing  col l is ion in tegra l  va lues  we re  taken identical  to those of [8]. The n e u t r a l - n e u t r a l  and n e u t r a l - i o n  
col l is ion in tegra ls  in this case a re  power  functions of t e m p e r a t u r e ,  which is ve ry  convenient  in calculat ing 
F~ and Fj. The analyt ical  e x p r e s s i o n s  obtained for  these quanti t ies  have the f o r m  

F~ = Aj (T. 10-4) -z j .  (23) 

299 



' [ 2 

o,50 t 

o $ 1o I4 T 

Fig. 2. Dimensionless heat- 
transfer coefficient versus brak- 
ing t e m p e r a t u r e  (10~K): 1 )pres -  
ent study; 2) Fay-RlddeU c a l -  
culation; 3) [12]. 

The values of the coeff ic ients  Aj and mj are presen t ed  in Table 1. Then 

T1 .~ 
D = 0 . 0 8 3 7 - -  (24) 

c / P ' 

where P i s  in :Pa. 

Resul t ing values  of the v i scos i ty  and t h e r m a l  conductivity coeff icients  for  a p r e s s u r e  of 1 a tm a re  p r e -  
sented in Fig. l a ,  b,  c. Also shown are  data obtained in [8, 10]. The g r e a t e s t  deviation of the p r e sen t  r e su l t s  
f r o m  those of [8] occu r s  for  the f rozen  t h e r m a l  conductivi ty,  but even in this case  the e r r o r  of the calculat ion 
by the approx imate  method does not exceed 15-20% up to t e m p e r a t u r e s  producing 80% ionization. This  a l so  
occu r s  at  p r e s s u r e s  d i f fer ing f r o m  a tmospher ic .  It  has a lso  been shown that  the s e m i e m p i r i c a l  expres s ions  
(1) and (2) a re  appl icable  not only for  neut ra l  gas m i x t u r e s ,  but a lso  for  pa r t i a l  ionization. 

The method desc r ibed  here in  was  used to calculate  heat  t r a n s f e r  on an i m p e r m e a b l e  su r face  in the vicini ty 
of the braking  point of an a x i s y m m e t r i c  blunt body in a flow of d i ssoc ia ted  and par t i a l ly  ionized a i r .  The gas 
composi t ion was a s s um ed  to be in equi l ibr ium.  The flow in the boundary l ayer  was desc r ibed  by the continuity 
equation,  and conse rva t ionequa t ions  fo r  m o m e n t u m ,  ene rgy ,  and chemica l  e lement  m a s s  in the  following form: 

p u m  

(25) 
oy 

Ou Ou O, 0 ( 0 ; )  
OU ~ x  + pv . . . .  Og Ox + "~g I~ , (26) 

v 

g 0v = (27) 
i = l  

v 
pu &zk &zk 0 ~ 

+ pv ov = ov v~jh. (28) 

Conditions on the ex te rna l  su r face  of the boundary l aye r  have the f o r m  

with boundary conditions on the wall  

(29) 

v -~ u ---- 0; T = Tw; ~ u = 0. (30) 
1=1 

Diffusion f lows were  calculated by the method of [5]. T e m p e r a t u r e ,  g a s  composi t ion,  and the requ i red  d e r i v a -  
t ives  of t e m p e r a t u r e  and component  concentra t ion with r e s p e c t  to spat ia l  coordinate were  calculated for  spec i -  
f ied enthalpy,  e l emen t  concent ra t ions ,  and der i va t i ve s  of these quanti t ies  with r e s p e c t  to coordina tes  f r o m  con-  
ditions of t he rmodynamic  equi l ibr ium.  The conserva t ion  equations were  t r a n s f o r m e d  to D o r o d n i t s y n - L e e s  
v a r i a b l e s  [11, 12]. The numer i ca l  solution method is based on a finite d i f ference  scheme of s e c o n d - o r d e r  
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accuracy .  The di f ference  equations were  solved by Newton 's  method with m a t r i x  fac tor iza t ion .  Resul ts  of the 
h e a t - t r a n s f e r  calculat ion for  Pe = 1 a im ,  Tw = 2000~ a re  p r e sen t ed  in Fig. 2, where  

Nu qw Prw 
0u '  

For  c o m p a r i s o n ,  Fig. 2 a lso  shows calcula t ions  by the F a y - R i d d e l l  fo rmula  [11] for  low braMng t e m p e r a ~ r e s  
(dissociat ion region) and Sus lov ' s  r e su l t s  [12] in the ionization region.  In [12] the diffusion flows were  ca lcu-  
lated d i rec t ly  with the S t e f an -Maxwe l l  equation. The deviat ions which ex i s t  (up to 25%) a re  evidently due to 
d i f fe rences  in the col l is ion in tegra l  va lues  chosen.  

On the whole the p r e s e n t  r e s u l t s  agree  with those of [11, 121 in a comple te ly  s a t i s f ac to ry  manner .  The 
method of h e a t - t r a n s f e r  calculat ion desc r ibed  he re  may  be used for  gas m ix tu r e s  other  than a i r ,  in p a r t i c u l a r ,  
in the p r e sence  of a d ra f t  of some other  gas.  

P 

M 

Id 
xj 
zj 
e 

Cp 
R 
T 
P 
k 
q 
Jj 
ak  

tt 
x ~ y  

I n d i c e s  

e 

w 
oO 

n 

i 

N O T A T I O N  

is the v i scos i ty ;  
is the f rozen  t h e r m a l  conductivity;  
is the total  t h e r m a l  conductivity;  
is the densi ty;  
is the m o l e c u l a r  m a s s ;  
is the mean  mo lecu l a r  m a s s ;  
is the b inary  diffusion coefficient;  

is  the reduced  col l is ion in tegra l ;  
~s the m o l a r  concentra t ion;  
is the ionic charge  mul t ip l ic i ty ;  
is the symbol  fo r  e lec t ron ;  
is the hea t  capaci ty;  
~s the un ive r sa l  gas constant ;  
~s the t e m p e r a t u r e ;  
is the p r e s s u r e ;  
~s the Bo l t zmann ' s  constant;  
is the t h e r m a l  flux; 
is the diffusion flow; 
~s the m a s s  concentra t ion  of e lement ;  
Is the m a s s  content of e l em en t  k in component  j; 
~s the enthalpy;  
a r e  the longitudinal and t r a n s v e r s e  bounda ry - l aye r  coordina tes ;  
a re  the longitudinal and t r a n s v e r s e  components  of gas veloci ty  in boundary layer .  

is the braking  condition; 
is the conditions on wall;  
is the conditions in incident flow; 
is neutral ;  
is the ion. 
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R E L A T I O N S H I P  O F  GAS P H A S E  MAS S  T R A N S F E R  T O  

T H E R M A L  C O N D U C T I V I T Y  O F  R E F R A C T O R I E S  

E .  Y a .  L i t o v s k i i ,  F .  S. K a p l a n ,  
a n d  A.  V. K l i m o v i c h  

UDC 536.21 

The problem of change in the rmal  res i s tance  of pores  and mic roc racks  in r e f r a c t o r i e s  with oc -  
c u r r e nc e  of heterogeneous  reac t ions  and format ion of gas with diffusion product  t r ans fe r  in the 
t e mpe ra tu r e  gradient  field is analyzed. 

It  has been demons t ra ted  previously  [1-3] that thermal  res i s tance  of the m ic ro c r ack s  which have a marked  
influence on effect ive the rma l  conductivity and diffusivity of ce ramics ,  r e f r a c t o r i e s ,  and other  porous ma-  
t e r ia l s  is re la ted  to,  among other  f ac to r s ,  the intensity of m a s s - t r a n s f e r  p roces se s  in the gas phase. Such a 
p roces s  develops in mic rocav i t i e s  fil led by gas in the p resence  of a t empera tu re  gradient  and is caused by the 
t empera tu re  dependence of equi l ibr ium p re s su re  of the gaseous products  formed by heterogeneous chemical  
react ions  and phase t ransformat ions .  In this case the effective thermal  conductivity of the mic roc racks  must  
be supplemented by a t e r m  re la ted  to mass  t r ans f e r .  

8 
~" = ~-'  ] ' H i  "A-T- - '  (1) 

i 

where Ji is the mola r  flow of the i- th gaseous component,  Hi, its enthalpy; 5, gap thickness;  ~ T ,  t empera tu re  
change. 

in [3] express ions  were  obtained for  the effective mass  flow and effect ive thermal  conductivity of a m i c r o -  
c r ack  for  f r e e - m o l e c u l a r  (Knudsen) gas flow (xKn). Such a reg ime is rea l ized  at high ra re fac t ions  in nar row 
gaps. However ,  it follows f rom analysis  of the s t ruc ture  of many r e f r a c t o r i e s  that they contain a significant 
quantity of coarse  pores  and c racks ,  where  at p r e s s u r e s  of 102-105 N/m 2 gas product  t r ans fe r  is accomplished 
basical ly due to diffusion. The effective the rmal  conductivity of a m i c r o c r a c k  in the diffusion regime X D is de-  
t e rmined  by the t empera tu re  and thermodynamic  proper t i es  of the sys tem,  and in cont ras t  to the p a r a m e t e r  
kKn it is depender~ on the diffusion coeff ic ients  of the molecu les ,  t h e i r  concentra t ions ,  the total gas p r e s su re  
p, and the re la t ionship between the flows Ji. In the s imples t  case of a binary mixture  consist ing of an "act ive" 
substance,  i .e . ,  one which l ibera tes  gas during a heterogeneous react ion or  phase t rans i t ion,  and a "pass ive"  
gas,  i ,e . ,  one not par t ic ipat ing in these p r o c e s s e s ,  the express ion  for  k D has the fo rm 

~D PPA . (AH) 2 
P - -  PA R ~ T  ~ ~ (2) 

where  D ~ p_t is the binary diffusion coefficient;  PA ~ exp (--AH/RT) is the p r e s su re  of active gas; AH, the rmal  
effect  of the p rocess ;  R, gas constant;  T = V~IT 2 (T1 and T 2 are  t empera tu re s  of hot and cold surfaces}. 

Equation (2} was obtained by solution of the diffusion equation in a p lane-para l le l  gap with considerat ion 
of the Stefan flow [4], assuming the p roces s  occurs  in equi l ibr ium and that AT << T. It is analogous to the ex-  
p ress ion  for  the rmal  conductivity of a chemical ly  react ing gas mixture  of [5], differing only by the fac tor  PA/ 
P - P A  produced by the Stefan mass  flow. 
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