AN APPROXIMATE METHOD FOR CALCULATING
TRANSFER COEFFICIENTS FOR PARTIALLY
IONIZED GAS MIXTURES .

M. N, Rolin, F, B. Yurevich, UDC 536,24
and V., V. Kondrashov

A universal method, economical in the number of calculations required, is proposed for calculat-
ing transfer coefficients for partially ionized gas mixtures with an unlimited number of compo-
nents, Its use is illustrated with the example of calculating heat transfer in a flow of low-tem-
perature plasma, ’

Calculating the heat and mass transfer in flows of low-temperature plasma requires data on the transfer
coefficients of gas mixtures of various compositions over a wide range of temperature and pressure. Direct
calculation of these values during solution of heat- and mass-transfer problems on permeable and impermeable
surfaces is difficult because of the great complexity of the exact formulas of molecular theory and the limited
capabilities of present computers.

Use of preexisting tabulations of viscosity and thermal conductivity coefficients is not always possible.
Due to variability of the large number of parameters on which these quantities depend, the volume of the tables
proves to be unusually large. Thus, there is a need for simplified methods of calculating transfer coefficients,
based on semiempirical expressions for viscosity and frozen thermal conductivity. A detailed review of such
expressions for neutral gas mixtures was presented in [1, 2]. Especially simple expressions can be obtained
with the use of the bifurcation approximation for binary diffusion coefficients [3, 4].

In [5] the present authors proposed an approximate method for calculating multicomponent diffusion in
partially ionized gas mixtures, based on the ambipolar approximation. A two-group bifurcation approxima-
tion was used for the binary diffusion coefficients. This allowed reduction of the solution of the system of
equations describing multicomponent diffusion for an v-component mixture to solution of a system of four
linear equations,

This same approximation may be used to simplify the expressions for viscosity and frozen thermal con-
ductivity.

The approximate formula for viscosity of a multicomponent gas mixture [2] has the following form:
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To calculate the frozen thermal conductivity it is desirable to use an analogous formula which is one
variant of Vasil'eva's equation [1]
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Simpler expressions for the thermal conductivity and viscosity coefficients of gas mixtures such as the
formulas of Mann and Brokaw are not applicable under conditions of ionization [6].

The viscosity and thermal conductivity of individual components may be represented as follows:
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The latter expression uses Eiken's correction for internal degrees of particle freedom [11.

Calculations with Eqs.(1), (2) are made difficult by the presence of a double summation and the necessity
of calculating all binary diffusion cross-coefficients, the general formula of which has the form:
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With increase in the number of components considered there is a progressive increase in the number of
computations required and the memory space needed to retain the initial data required for calculation of £
These difficulties may be avoided if we use the two-group bifurcation approximation for the binary diffusion
coefficient [5]. The two groups of components, neutrals and ions, correspond to three groups of binary diffu~
sion coefficients: 1) neutral —neufral; 2) neutral—ion; 3) ion—ion,

For each component we introduce two factors which approximately characterize its properties in the dif-
fusion process: FI and F}. The first of these refers to binary diffusion of the given component and any neutral
component; the sécond, to binary diffusion of the given component and any ion. Thus, for the first group of
diffusion coefficients we have the following approximate equality:
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where D is the value of the diffusion coefficient for particles of unit molecular mass for unity value of the col-
lision integral QY. 1t has been shown [3] that for many systems of neutral componenis corresponding to gas
mixtures often met in practice, the factors FY may be selected such that Eq. (7) is satisfied with a sufficient
degree of accuracy, This is due to the character of the dependence of the diffusion coefficient on molecular
mass of the components and the presence of certain correlations between values of the collision integrals,
Since the collision integrals for neutral particles are functions of temperatures the factors Fg will also be
temperature dependent.

An analogous approach may be used in the presence of ionization.

For the second group of binary diffusion coefficients we use the following expression:
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The subscript k here indicates a neutral component; { denotes an ion.

A special case is the diffusion of an atom and an ion of one and the -same element, Upon colllsmn of such
particles resonant charge exchange occurs, which leads to relatlvely high values of the quantities a’l ) 171, so
that use of Eq. (8) is not desirable. For this case we take
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where r is the index of the particle collision with particle k which occurs with resonant charge exchange. The
quantities ﬂ(lill) for neutral—ion collisions, and consequently, the factors }5‘1 Fn are functions of temperature.
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For the third group of binary diffusion coefficients
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where Sli(;’i) is the colliéion inteFTal for single charged ions, This form was chosen so that for positively
charged ions Q(fd’i) = (zkzl)zﬂi(; ) [8]. " The quantities F} in this case prove to be constant.

For a given system of components to be considered the factors FJP, Fl are selected such that the approxi-
mate equalities (7), (8), (10) have the smallest possible relative error. Tﬂey may be calculated with the meth-
od of least squares. For example, for the first group of diffusion coefficients we use the condition
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The summation in Eq. (11) is performed over all neutral components. Differentiation of Eq. (11) produces a
system of linear algebraic equations in In FQ!, the solution of which gives Fg values in explicit form. The coef-
ficients Fﬁ, F{l and Fi are determined in an analogous manner, Substitution of approximations (7)-(10) in

Eqgs. (1), (2) with consideration of Eqs. (3)-(5) produces the following expressions for viscosity and frozen
thermal conductivity:
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where for neutrals
Ty=F} By + FiBu, (15)
for ions
T; = F] Bi + F{ By, (16)
for atoms and atomic ions
R; = x,(V M;Q};"") —Fi F}), 17
and for remaining particles )
R;=0. (18)
The quantities By; are defined as follows:
Bnn = zxil:;l (19)
n .
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In Egs. (19), (21) summation is performed over all neutrals, and in Eqgs. (20), (22), over all ions. The volume
of calculations with Egs.(12)-(22) is proportional to the number of components, which significantly simplifies
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TABLE 1. Coefficients of Analytical Expressions for Approximated

Factors
F Fh F! F
compo- | ! o ! Compo-, ! !
nent Al om Al om nent A m Al m
0O, 9,15 0,154 8,56 | 0,500 N 5,85 0,197 5,84 0,400
NO 8,93 | 0,098 8,46 | 0,500 NO+ 11,27 | 6,000 2,32 | 0,000
N, 8,82 0,143 | 8,35 | 0,500 Ot 9,59 | 0,000 2,00 | 0,000
(o] 5,49 0,202 6,06 | 0,400 N+ 9,28 | 0,000 1,93 | 0,000
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Fig. 1. Viscosity (10~ N- sec/m?) (a), frozen thermal conduc-
tivity (W/m-°K) (b), and total thermal conductivity of air (W/
m-°K) (c) versus temperature (103°K): 1) present study: 2) re-
sults of [8]; 3) [10].

calculations of transfer properties of mixfures with complex composition as compared to calculations with the
original Eqs. (1)-(5). It is also significant that for calculations of transfer properties of mixtures with variable
composition it is sufficient to retain in the compt_iter memory a number of coefficients proportional to v, ap-~
pearing in the analytic expressions for F? and F}, or the values of these quantities for a number of tempera-
tures. It is sufficient to determine the values otJ these coefficients once, before calculating the transfer coeffi-

cients.

To estimate the errors produced by the method described above, the transfer properties of equilibrium
air at pressures of 0,1-10atm were calculated. The total thermal conductivity of the equilibrium gas mixture
was defined as the value of thermal flux generated by a unit temperature gradient. Moreover, the absence of
diffusion flows of chemical element mass was required. This corresponds to Butler and Brokaw's definition
of total thermal conductivity [9]. A quite detailed calculation of the transfer properties of air was performed
by Sokolova [8], using formulas for higher approximations of Chapman—Enskog theory., For comparison, the
resulting collision integral values were taken identical to those of [8]. The neutral—neutral and neutral—ion
collision integrals in this case are power functions of temperature, which is very convenient in calculating
F;l and FJ1 The analytical expressions obtained for these quantities have the form

Fj=A;(T-1074™™. (23)
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Fig. 2, Dimensionless heat-
-transfer coefficient versus brak-
ing temperature (10%K): 1)pres-
ent study; 2) Fay-Riddell cal~
culation; 3) [12].

The values of the coefficients Aj and m;j are presented in Table 1. Then

Tl.5
7

D (1041) ~0.0837 (24)

where P is in Pa.

Resulting values of the viscosity and thermal conductivity coefficients for a pressure of 1 atm are pre-
sented in Fig.la, b, c. Also shown are data obtained in [8, 10]. The greatest deviation of the present results
from those of {8] occurs for the frozen thermal conductivity, but even in this case the error of the calculation
by the approximate method does not exceed 15-20% up to temperatures producing 80% ionization. This also
occurs at pressures differing from atmospheric. It has also been shown that the semiempirical expressions
(1) and (2) are applicable not only for neutral gas mixtures, but also for partial ionization.

The method described herein was used to calculate heat transfer on an impermeable surface in the vicinity
of the braking point of an axisymmetric blunt body in a flow of dissociated and partially ionized air. The gas
composition was assumed to be in equilibrium. The flow in the boundary layer was described by the continuity
equation, and conservationequations for momentum, energy,and chemical element mass inthe following form:
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Conditions on the external surface of the boundary layer have the form
du du
- . F—3 m; — — 3 29
H=H; o= dx (ax )e 29)
with boundary conditions on the wall
v
U=u=0; T=Tw;2?hJJ]=0' (30)
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Diffusion flows were calculated by the method of [5]. Temperature, gas composition, and the required deriva-
tives of temperature and component concentration with respect to spatial coordinate were calculated for speci-
fied enthalpy, element concentrations, and derivatives of these quantities with respect to coordinates from con-
ditions of thermodynamic equilibrium. The conservation equations were transformed to Dorodnitsyn—Lees
variables [11, 12]. The numerical solution method is based on a finite difference scheme of second-order
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accuracy. The difference equations were solved by Newton's method with matrix factorization. Results of the
heat-transfer calculation for P, =1 atm, Ty = 2000°K are presented in Fig, 2, where

Nu g, Pr,
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ox /.
For comparison, Fig. 2 also shows calculations by the Fay—Riddell formula [11] for low braking temperatures
(dissociation region) and Suslov's results [12] in the ionization region. In [12] the diffusion flows were calcu-
lated directly with the Stefan— Maxwell equation. The deviations which exist (up to 25%) are evidently due to
differences in the collision integral values chosen.

On the whole the present results agree with those of {11, 12] in a completely satisfactory manner. The
method of heat-transfer calculation described here may be used for gas mixtures other than air, in particular,
in the presence of a draft of some other gas.

NOTATION

is the viscosity;

is the frozen thermal conductivity;
is the fotal thermal conductivity;
is the density;

is the molecular mass;

is the mean molecular mass;

is the binary diffusion coefficient;

ng’o V:'C

2
le’ is the reduced collision integral;

is the molar concentration;

is the ionic charge multiplicity;

is the symbol for electron;

is the heat capacity;

is the universal gas constant;

is the temperature;

is the pressure;

is the Boltzmann's constant;

is the thermal flux;

is the diffusion flow;

is the mass concentration of element;

is the mass content of element k in component j;

is the enthalpy;

are the longitudinal and transverse boundary-layer coordinates;

are the longitudinal and transverse components of gas velocity in boundary layer.
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Indices

is the braking condition;

is the conditions on wall;

is the conditions in incident flow;
is neutral;

is the ion.
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RELATIONSHIP OF GAS PHASE MASS TRANSFER TO
THERMAL CONDUCTIVITY OF REFRACTORIES

E. Ya. Litovskii, F, S, Kaplan, UDC 536.21
and A, V., Klimovich

The problem of change in thermal resistance of pores and microcracks in refractories with oc-
currence of heterogeneous reactions and formation of gas with diffusion product transfer in the
temperature gradient field is analyzed. '

It has been demonstrated previously [1-3] that thermal resistance of the microcracks which have a marked
influence on effective thermal conductivity and diffusivity of ceramies, refractories, and other porous ma-
terials is related to, among other factors, the intensity of mass-transfer processes in the gas phase. Such a
process develops in microcavities filled by gas in the presence of a temperature gradient and is caused by the
temperature dependence of equilibrium pressure of the gaseous products formed by heterogeneous chemical
reactions and phase transformations., In this case the effective thermal conductivity of the microcracks must
be supplemented by a term related to mass transfer:

. 6
}\'=Z]iHi vk (1)

where jj is the molar flow of the i-th gaseous component, Hj, its enthalpy; &, gap thickness; AT, temperature
change.

In [3] expressions were obtained for the effective mass flow and effective thermal conductivity of a micro-
crack for free-molecular (Knudsen) gas flow (AKn). Such a regime is realized at high rarefactions in narrow
gaps. However, it follows from analysis of the structure of many refractories that they contain a significant
quantity of coarse pores and cracks, where at pressures of 10?~10° N/m? gas product transfer is accomplished
basically due to diffusion. The effective thermal conductivity of a microcrack in the diffusion regime AP is de-
termined by the temperature and thermodynamic properties of the system, and in contrast to the parameter
AKn it is dependent on thediffusion coefficients of the molecules, their concentrations, the total gas pressure
p, and the relationship between the flows jj. In the simplest case of a binary mixture consisting of an "active"
substance, i.e., one which liberates gas during a heterogeneous reaction or phase transition, and a "passive"
gas, i.e., one not participating in these processes, the expression for AD has the form

PP, (AHP

AP = .
T p—p, RT3 ? )

where D ~ p~! is the binary diffusion coefficient; pA ~ exp (-AH/RT) is the pressure of active gas; AH, thermal
effect of the process; R, gas constant; T =vT,T, (T; and T, are temperatures of hot and cold surfaces).

Equation (2) was obtained by solution of the diffusion equation in a plane-parallel gap with consideration
of the Stefan flow [4], assuming the process occurs in equilibrium and that AT « T, It is analogous to the ex-
pression for thermal conductivity of a chemically reacting gas mixture of [5], differing only by the factor py/
p—pp produced by the Stefan mass flow.
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